March 30, 1995

THE HONORABLE JOHN D. HOLUM, DIRECTOR
U.S. ARMS CONTROL AND DISARMAMENT AGENCY
ADDRESS TO THE NATIONAL SCIENCE AND
TECHNOLOGY COUNCIL NATIONAL
ACADEMY OF SCIENCES

Thank you. I want to congratulate John Gibbons, Jane Wales and the other organizers of this conference for the significant contributions it's making to our knowledge -- and our national security.

The nuclear age began fifty years ago, near Soccoro, New Mexico. The Trinity explosion made glass of the desert sand -- and moved J. Robert Oppenheimer, the Manhattan Project's head scientist, to utter these now-famous words from Sanskrit poetry: "I am become death, the destroyer of worlds."

Science and technology have often been cast as villains in arms control and nonproliferation -- sometimes by scientists themselves. It is widely believed that if we could just place a lock on the technologies of mass destruction, in the lab and certainly in international commerce, then we'd hold the key to a safer world.

Technology denial is one method of arms control. But I want to emphasize this morning the contributions of technology development to the same cause. As Adlai Stevenson said, "There is no evil in the atom, only in men's souls." From my seat at the national security table, science and technology are not the enemy. Instead, one of their main effects is to empower us, by enabling us to make arms control more effective and to broaden its scope.

Partly as a result and speaking unmistakably to those who think of this work as a "Cold War relic" President Clinton, in his March 1 address to the Nixon Center, affirmed that in 1995 "the United States will pursue the most ambitious agenda to dismantle and fight the spread of weapons of mass destruction since the atom was split."

I'd like to illuminate the role of science and technology in arms control and nonproliferation by focusing on several leading elements of the immense agenda the President described.

Last week's tragic events in Tokyo underscore the need for all nations to make chemical weapons harder to make and easier to trace. The United States has the opportunity to lead this year in bringing the Chemical Weapons Convention into force.

No one step can guarantee a world without terror; as President Clinton said in his speech, nonproliferation has no "silver bullet." But the CWC is a huge step forward. Without it, stockpiling chemical weapons is legal; under it, all chemical weapons will be outlawed, and their ingredients more widely and rigorously controlled.

The CWC resulted from a confluence of scientific wherewithal and political will. In theory, the use of chemical weapons was banned by the 1925 Geneva Protocol. But that agreement was quickly rendered toothless, in part because the technology of chemical weapons had far outpaced the development of any tools to detect them. The problem was compounded by the fact that chemical weapons often are made from ordinary chemical precursors with legitimate uses.

But now new technology -- for example, a portable combination gas chromatograph/mass spectrometer (GC/MS) -- makes it feasible to detect specific compounds in small concentrations. If paired with sophisticated software, the GC /MS can sniff the molecules specific to chemical weapons production and degradation, while not reporting other chemicals involved in legitimate, proprietary processes.

The CWC's extensive verification regime harnesses advances already achieved, and by design leaves room for others to come -- an explicit assignment to scientific communities represented here today.

We have in some respects an even greater challenge in the realm of biological arms. While chemical weapon compounds are relatively distinct and unambiguous, biological weapons agents may be fragile and -- with a relatively common carbon-based composition -- even harder to detect. And while chemical weapons usually become less lethal as diluted, biological organisms in the right host environment will multiply and spread.

These challenges magnify the role of science, as we wrestle this year with ways to strengthen and improve compliance with the Biological Weapons Convention. For detection purposes, we need to pinpoint the exact genetic composition of biological agents. Already we have instruments that can find some organisms at concentrations of one in a billion; but we need even better capability, to detect a range of "bugs" and work reliably under even dirty and mobile conditions.

There is an equally indiscriminate -- and even cheaper -- weapon that as yet has not received the scientific attention it deserves: antipersonnel landmines, which the Clinton Administration is taking major steps to bring under control. Today, some 100 million such landmines are buried, but alive; at least ten new ones are emplaced for every old one cleared; and left-over landmines kill and maim many people every day -- most often children at play or farmers returning to their fields.

We're unlikely any time soon to achieve a global consensus against military uses of landmines. But if all mines included self-destruct devices, then -- after their military utility had expired -- the mines could deactivate and cease threatening anyone. So to begin, we urgently need to develop cheap self-destruct and self-deactivating components costing, say, $3, versus about $25 for those now standard in U.S. mines. Closing this gap in cost will boost our efforts to rid the world of long-lived mines.

Finding mines is also no easy trick. Most demining today is done with 40 year-old technology Modem neutron probes and earth penetrating radars could do better. One experimental infrared technique has even been directly adapted from instruments used to measure the temperature of a nuclear detonation's fireball. Although all of these ideas work, none is yet fully practical. Whoever makes these breakthroughs will have achieved an immediate human good of heroic proportions.

1995 is a momentous year for nuclear arms control and nonproliferation. Starting next month, the fate of the Nuclear Nonproliferation Treaty will be determined in its 25th-year review and extension conference in New York. President Clinton has made clear that "Nothing is more important to prevent the spread of nuclear weapons than extending the Treaty indefinitely and unconditionally."

The NPT, now with 174 members, is becoming increasingly valuable as the International Atomic Energy Agency becomes increasingly effective. The IAEA has strengthened its safeguards regime in recent years, thanks to improved measurement devices, integrated systems for surveillance and measurement, robust tamper indicative devices, reliable communications and other advances.

The New York conference will also focus on the NPT as an engine for scientific cooperation and commerce in the peaceful uses of nuclear energy under effective international safeguards. The United States has vigorously promoted and practiced such cooperation, according preference to parties to the NPT or equivalent regional arrangements. So an uncertain future for the NPT would put at risk most peaceful nuclear cooperation ... and its many fruits enjoyed throughout the world, in fields ranging from agriculture to power generation to medicine.

Paranoia and selfishness cripple scientific progress; the United States is committed to keeping them out of the laboratory. The Treaty's role in support of peaceful nuclear cooperation is yet another strong reason to make it last forever.

1995 is a decisive year for the Comprehensive Test Ban Treaty. The test ban's time has come -- to ensure that there won't be another qualitative arms race, and also to restrain proliferation, by denying aspiring proliferators the ability to advance beyond primitive, cumbersome devices.

President Clinton has revised the U.S. negotiating position to speed conclusion of the Treaty. And he has further extended the United States moratorium on nuclear tests, to overlap with the expected completion of the test ban negotiations. The meaning is profound: If the Conference on Disarmament does its job, we are prepared for the conclusion that the United States has already conducted its last nuclear test.

For decades, the chief barrier to a comprehensive test ban has not been its desirability as a matter of policy, but its feasibility as a matter of science -- both as to verification, and to confidence in maintaining a safe and reliable nuclear stockpile.

For verification, we can now build more sensitive monitoring stations to help locate and identify clandestine testing. Hydroacoustic monitoring, a global network of radioactivity-measuring equipment, and remote studies of likely test sites all will contribute to our confidence that the ban is being respected.

One likely component of a global monitoring system is made possible by the remarkable growth in the power and cost-effectiveness of high-speed data communications links and digital computers. The proposed international data center will routinely and continuously process gigabytes of raw data, boiling it down to a form at least ten thousand times more compact, thus making it useful to treaty parties.

Because nuclear deterrence remains vital to U.S. national security, we will also maintain a science-based stockpile stewardship program, including sustained research and a viable base of scientific expertise in nuclear weapons design and manufacture. For example:

And the National Ignition Facility could conduct experiments of great scientific value in fields closely-enough related to the physics of weapons design to maintain the skills of a cadre of nuclear experts. But the NIF also is intended neither to generate new weapons designs nor to risk spreading nuclear weapons technology.

Another leading negotiating priority for 1995 is the global cutoff in the production of fissile material for nuclear explosives -- our best hope of putting a cap on the potential nuclear programs of the so-called nuclear threshold states -- India, Pakistan and Israel -that are outside the NPT.

For detecting undeclared activities, perhaps the most dramatic scientific developments relate to extremely sensitive environmental monitoring. No matter how careful a violator may be in conducting clandestine nuclear activities, some particles will escape. Even minute concentrations can now be detected through sampling and particle analysis ... though of course we seek further advances in this area.

1995 is also a decisive year for strategic arms control -- in particular, for implementation of the Strategic Arms Reduction Treaty, or START, and ratification of START II.

Signing ceremonies are nice, but the promise of arms control isn't fulfilled until agreed reductions are made -- and verified, for verification has always been the sine qua non of sound arms control. Even today, when on-site inspection is routine, "National Technical Means" -- ways to look but not touch -- are decisive.

For example, the COBRA DANE phased array radar in Alaska and the COBRA JUDY ship radar, combined with the COBRA BALL aircraft, allow the United States to monitor every reentry vehicle flown from Russian test ranges ... so we know the capabilities of each Russian missile, new or old.

This is a remarkable capability, at the intersection of policy, geopolitics, and science. It may be of interest to you that the President's FY 1996 budget gives ACDA responsibility for COBRA DANE, because its greatest value now is to verify, safeguard, and monitor the START reductions of strategic nuclear arms.

Looking to the future, strategic stability will be even better served once we and the Russians find ways to prove to one another that not only launchers and delivery vehicles -- but bombs and warheads themselves -- have been eliminated. This calls for creative diplomacy and science: transparency agreements and instruments that can, for example, measure the fissile material in weapons without revealing design secrets.

That may seem like a tall order, but there is a precedent: The CARGOSCAN X-ray machines used to verify the Intermediate-Range Nuclear Forces Treaty allow U.S. observers to learn just enough about a Russian missile to be sure that it is not one of those forbidden -- but without divulging the secrets of those missiles that are still allowed.

These are just a few examples of how science advances today's rich arms control agenda. They also illustrate broadly some of the priorities of the goverment's new working group to coordinate research and development in arms control and nonproliferation, which ACDA cochairs -- and some of the needs identified by the National Science and Technology Council's Committee on National Security.

Some of them also highlight how science can be a promissory note as well as a delivered product. The prospects for development of the portable gas chromatograph/mass spectrometer I mentioned were carefully considered in the lengthy negotiations culminating in the Chemical Weapons Convention. We have teamed to look to science for capabilities that don't exist yet, and to expect them in the reasonable future -- even if at first blush our requirements seem anything but reasonable.

So we in the policy community need to keep the science and technology community aware of what we would like to do. And you, in turn, should keep us informed of your new ideas techniques and developments -- which, given the nature of science, we may find useful even in unintended or unexpected ways. At least, as Faraday said to the cabinet minister interested in his experiments with electricity, someone will find a way to tax them.

President Kennedy established ACDA seeking to drain danger from the Cold War's chill. He set his course by the star of a less heavily armed world, and sent the United States out -- as he did to the moon -- on a ship powered by possibilities.

Today, scientific advances are helping us decide not just how to formulate and verify arms control agreements, but whether to do so in certain areas; they give us a richer array of policy choices. They allow us realistically to pursue forms of arms control which, even just recently, were beyond reach.

Conclusion

It's been said that arms control often is rocket science. In fact, I've said it -- more than once, recently, in defending an independent, expert agency for arms control. So this morning really has been a return to perhaps the central nexus in my field, between policy, law, negotiation ... and science.

And as it is rocket science, arms control is also national security -- in Secretary Perry's apt phrase, "defense by other means." It is a source of national strength ... fortified by science.

This room will be filled today with men and women of tremendous intellect and good will. It is exciting to think that this forum may well spur some of you to apply science and technology to arms control in a way that protects peace ... prevents suffering...makes our lives at once more civilized and more secure.

The technology of destruction marches ever onward; human nature almost guarantees it. Our task is to contain and counter that trend with a greater one. No less than their colleagues who find the cure for AIDS or cancer, the scientists and engineers who help the tools of peace prevail over the instruments of war will be heroes.

That science and technology can help us should come as no surprise. For it is the products of science and technology -- such as computers and their networks, CNN, and fax machines -- that are already paving the way to a world of more open markets, open societies, open possibilities. Arms control is part of this overarching trend: As the President and his national security team have emphasized, this work serves not to isolate us, but to fulfill and deepen our engagement in the world.

Aided by science, arms control can help us build the kind of world that is in our deepest interests: a world where nations are valued not for the arms they keep, but the commitments they keep...to other nations, and to their own people.